I was recently faced with a prompt for a programming algorithm that I had no idea what to do for. I\'ve never really written an algorithm before, so I\'m kind of a newb at t
If you have 15, 10, 6 and 2 cents coins and you need to find how many distinct ways are there to arrive to 50 you can
So you basically can split the problem in smaller problems (possibly smaller amount and fewer coins). When you have just one coin type the answer is of course trivial (either you cannot reach the prescribed amount exactly or you can in the only possible way).
Moreover you can also avoid repeating the same computation by using memoization, for example the number of ways of reach 20 using only [6, 2] doesn't depend if the already paid 30 have been reached using 15+15 or 10+10+10, so the result of the smaller problem (20, [6, 2]) can be stored and reused.
In Python the implementation of this idea is the following
cache = {}
def howmany(amount, coins):
prob = tuple([amount] + coins) # Problem signature
if prob in cache:
return cache[prob] # We computed this before
if amount == 0:
return 1 # It's always possible to give an exact change of 0 cents
if len(coins) == 1:
if amount % coins[0] == 0:
return 1 # We can match prescribed amount with this coin
else:
return 0 # It's impossible
total = 0
n = 0
while n * coins[0] <= amount:
total += howmany(amount - n * coins[0], coins[1:])
n += 1
cache[prob] = total # Store in cache to avoid repeating this computation
return total
print howmany(50, [15, 10, 6, 2])