In the spark docs it\'s clear how to create parquet files from RDD of your own case classes; (from the docs)
The best solution I've come up with that requires the least amount of copy and pasting for new classes is as follows (I'd still like to see another solution though)
First you have to define your case class, and a (partially) reusable factory method
import org.apache.spark.sql.catalyst.expressions
case class MyClass(fooBar: Long, fred: Long)
// Here you want to auto gen these functions using macros or something
object Factories extends java.io.Serializable {
def longLong[T](fac: (Long, Long) => T)(row: expressions.Row): T =
fac(row(0).asInstanceOf[Long], row(1).asInstanceOf[Long])
}
Some boiler plate which will already be available
import scala.reflect.runtime.universe._
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.createSchemaRDD
The magic
import scala.reflect.ClassTag
import org.apache.spark.sql.SchemaRDD
def camelToUnderscores(name: String) =
"[A-Z]".r.replaceAllIn(name, "_" + _.group(0).toLowerCase())
def getCaseMethods[T: TypeTag]: List[String] = typeOf[T].members.sorted.collect {
case m: MethodSymbol if m.isCaseAccessor => m
}.toList.map(_.toString)
def caseClassToSQLCols[T: TypeTag]: List[String] =
getCaseMethods[T].map(_.split(" ")(1)).map(camelToUnderscores)
def schemaRDDToRDD[T: TypeTag: ClassTag](schemaRDD: SchemaRDD, fac: expressions.Row => T) = {
val tmpName = "tmpTableName" // Maybe should use a random string
schemaRDD.registerAsTable(tmpName)
sqlContext.sql("SELECT " + caseClassToSQLCols[T].mkString(", ") + " FROM " + tmpName)
.map(fac)
}
Example use
val parquetFile = sqlContext.parquetFile(path)
val normalRDD: RDD[MyClass] =
schemaRDDToRDD[MyClass](parquetFile, Factories.longLong[MyClass](MyClass.apply))
See also:
http://apache-spark-user-list.1001560.n3.nabble.com/Spark-SQL-Convert-SchemaRDD-back-to-RDD-td9071.html
Though I failed to find any example or documentation by following the JIRA link.