I have a spark DF with rows of Seq[(String, String, String)]. I\'m trying to do some kind of a flatMap with that but anything I do try ends up thro
Well, it doesn't claim that it is a tuple. It claims it is a struct which maps to Row:
import org.apache.spark.sql.Row
case class Feature(lemma: String, pos_tag: String, ne_tag: String)
case class Record(id: Long, content_processed: Seq[Feature])
val df = Seq(
Record(1L, Seq(
Feature("ancient", "jj", "o"),
Feature("olympia_greece", "nn", "location")
))
).toDF
val content = df.select($"content_processed").rdd.map(_.getSeq[Row](0))
You'll find exact mapping rules in the Spark SQL programming guide.
Since Row is not exactly pretty structure you'll probably want to map it to something useful:
content.map(_.map {
case Row(lemma: String, pos_tag: String, ne_tag: String) =>
(lemma, pos_tag, ne_tag)
})
or:
content.map(_.map ( row => (
row.getAs[String]("lemma"),
row.getAs[String]("pos_tag"),
row.getAs[String]("ne_tag")
)))
Finally a slightly more concise approach with Datasets:
df.as[Record].rdd.map(_.content_processed)
or
df.select($"content_processed").as[Seq[(String, String, String)]]
although this seems to be slightly buggy at this moment.
There is important difference the first approach (Row.getAs) and the second one (Dataset.as). The former one extract objects as Any and applies asInstanceOf. The latter one is using encoders to transform between internal types and desired representation.