I have a polar (r,theta) grid (which means that each cell is an annulus section) containing values of some physical quantity (e.g. temperature), and I would like to re-grid
I came to this post some time ago when trying to do something similar, this is, reprojecting polar data into a cartesian grid and vice-versa. The solution proposed here works fine. However, it takes some time to perform the coordinate transform. I just wanted to share another approach which can reduce the processing time up to 50 times or more.
The algorithm uses the scipy.ndimage.interpolation.map_coordinates
function.
Let's see a little example:
import numpy as np
# Auxiliary function to map polar data to a cartesian plane
def polar_to_cart(polar_data, theta_step, range_step, x, y, order=3):
from scipy.ndimage.interpolation import map_coordinates as mp
# "x" and "y" are numpy arrays with the desired cartesian coordinates
# we make a meshgrid with them
X, Y = np.meshgrid(x, y)
# Now that we have the X and Y coordinates of each point in the output plane
# we can calculate their corresponding theta and range
Tc = np.degrees(np.arctan2(Y, X)).ravel()
Rc = (np.sqrt(X**2 + Y**2)).ravel()
# Negative angles are corrected
Tc[Tc < 0] = 360 + Tc[Tc < 0]
# Using the known theta and range steps, the coordinates are mapped to
# those of the data grid
Tc = Tc / theta_step
Rc = Rc / range_step
# An array of polar coordinates is created stacking the previous arrays
coords = np.vstack((Ac, Sc))
# To avoid holes in the 360º - 0º boundary, the last column of the data
# copied in the begining
polar_data = np.vstack((polar_data, polar_data[-1,:]))
# The data is mapped to the new coordinates
# Values outside range are substituted with nans
cart_data = mp(polar_data, coords, order=order, mode='constant', cval=np.nan)
# The data is reshaped and returned
return(cart_data.reshape(len(y), len(x)).T)
polar_data = ... # Here a 2D array of data is assumed, with shape thetas x ranges
# We create the x and y axes of the output cartesian data
x = y = np.arange(-100000, 100000, 1000)
# We call the mapping function assuming 1 degree of theta step and 500 meters of
# range step. The default order of 3 is used.
cart_data = polar_to_cart(polar_data, 1, 500, x, y)
I hope this helps someone in the same situation as me.