This is my dataframe:
date ids
0 2011-04-23 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...
1 2011-04-24 [0,
Maybe not the most short/optimized solution, but I think is pretty readable:
# Packages
import ast
# Masking-in nans
mask = df['ids'].isna()
# Filling nans with a list-like string and literally-evaluating such string
df.loc[mask, 'ids'] = df.loc[mask, 'ids'].fillna('[]').apply(ast.literal_eval)
The drawback is that you need to load the ast
package.
EDIT
I recently figured out the existence of the eval()
built-in. This avoids importing any extra package.
# Masking-in nans
mask = df['ids'].isna()
# Filling nans with a list-like string and literally-evaluating such string
df.loc[mask, 'ids'] = df.loc[mask, 'ids'].fillna('[]').apply(eval)