There are several questions and posts about mixed models for more complex experimental designs, so I thought this more simple model would help other beginners in this proces
Please try below:
model1 <- lme(
Y ~ GROUP + X1,
random = ~ GROUP | person,
correlation = corCompSymm(form = ~ day | person),
na.action = na.exclude, data = df1, method = "REML"
)
summary(model1)
I think random = ~ groupvar | subjvar option with R lme provides similar result of repeated / subject = subjvar group = groupvar option with SAS/MIXED in this case.
Edit:
SAS/MIXED

R (a revised model2)
model2 <- lme(
Y ~ GROUP + X1,
random = list(person = pdDiag(form = ~ GROUP - 1)),
correlation = corCompSymm(form = ~ day | person),
weights = varIdent(form = ~ 1 | GROUP),
na.action = na.exclude, data = df1, method = "REML"
)
summary(model2)

So, I think these covariance structures are very similar (σg1 = τg2 + σ1).
Edit 2:
Covariate estimates (SAS/MIXED):
Variance person GROUP TEST 8789.23
CS person GROUP TEST 125.79
Variance person GROUP CONTROL 82775
CS person GROUP CONTROL 33297
So
TEST group diagonal element
= 125.79 + 8789.23
= 8915.02
CONTROL group diagonal element
= 33297 + 82775
= 116072
where diagonal element = σk1 + σk2.
Covariate estimates (R lme):
Random effects:
Formula: ~GROUP - 1 | person
Structure: Diagonal
GROUP1TEST GROUP2CONTROL Residual
StdDev: 14.56864 184.692 93.28885
Correlation Structure: Compound symmetry
Formula: ~day | person
Parameter estimate(s):
Rho
-0.009929987
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | GROUP
Parameter estimates:
1TEST 2CONTROL
1.000000 3.068837
So
TEST group diagonal element
= 14.56864^2 + (3.068837^0.5 * 93.28885 * -0.009929987) + 93.28885^2
= 8913.432
CONTROL group diagonal element
= 184.692^2 + (3.068837^0.5 * 93.28885 * -0.009929987) + (3.068837 * 93.28885)^2
= 116070.5
where diagonal element = τg2 + σ1 + σg2.