Im trying to analyse data from cycle accidents in the UK to find statistical black spots. Here is the example of the data from another website. http://www.cycleinjury.co.uk
First, your example is quite misleading. You have two different sets of data, and you don't control the data. If it appears in a chain, then you will get a chain out.
This problem is not exactly suitable for a database. You'll have to write code or find a package that implements this algorithm on your platform.
There are many different clustering algorithms. One, k-means, is an iterative algorithm where you look for a fixed number of clusters. k-means requires a few complete scans of the data, and voila, you have your clusters. Indexes are not particularly helpful.
Another, which is usually appropriate on slightly smaller data sets, is hierarchical clustering -- you put the two closest things together, and then build the clusters. An index might be helpful here.
I recommend though that you peruse a site such as kdnuggets in order to see what software -- free and otherwise -- is available.