Recently i have been interviewed. I didn\'t do well cause i got stuck at the following question
suppose a sequence is given : A D C B D A B C D A C D and search seq
Here is my solution in Python. It returns the indexes assuming 0-indexed sequences. Therefore, for the given example it returns (9, 11)
instead of (10, 12)
. Obviously it's easy to mutate this to return (10, 12)
if you wish.
def solution(s, ss):
S, E = [], []
for i in xrange(len(s)):
if s[i] == ss[0]:
S.append(i)
if s[i] == ss[-1]:
E.append(i)
candidates = sorted([(start, end) for start in S for end in E
if start <= end and end - start >= len(ss) - 1],
lambda x,y: (x[1] - x[0]) - (y[1] - y[0]))
for cand in candidates:
i, j = cand[0], 0
while i <= cand[-1]:
if s[i] == ss[j]:
j += 1
i += 1
if j == len(ss):
return cand
Usage:
>>> from so import solution
>>> s = 'ADCBDABCDACD'
>>> solution(s, 'ACD')
(9, 11)
>>> solution(s, 'ADC')
(0, 2)
>>> solution(s, 'DCCD')
(1, 8)
>>> solution(s, s)
(0, 11)
>>> s = 'ABC'
>>> solution(s, 'B')
(1, 1)
>>> print solution(s, 'gibberish')
None
I think the time complexity is O(p log(p)) where p is the number of pairs of indexes in the sequence that refer to search_sequence[0]
and search_sequence[-1]
where the index for search_sequence[0]
is less than the index forsearch_sequence[-1]
because it sorts these p pairings using an O(n log n) algorithm. But then again, my substring iteration at the end could totally overshadow that sorting step. I'm not really sure.
It probably has a worst-case time complexity which is bounded by O(n*m) where n is the length of the sequence and m is the length of the search sequence, but at the moment I cannot think of an example worst-case.