I am trying to efficiently solve SPOJ Problem 64: Permutations.
Let A = [a1,a2,...,an] be a permutation of integers 1,2,...,n. A pair of indices (i,
It's one day later and I have managed to solve the problem using dynamic programming. I submitted it and my code was was accepted by SPOJ so I figure I'll share my knowledge here for anyone who is interested in the future.
After looking in the Wikipedia page which discusses inversion in discrete mathematics, I found an interesting recommendation at the bottom of the page.
Numbers of permutations of n elements with k inversions; Mahonian numbers: A008302
I clicked on the link to OEIS and it showed me an infinite sequence of integers called the Triangle of Mahonian numbers.
1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1 . . .
I was curious about what these numbers were since they seemed familiar to me. Then I realized that I had seen the subsequence 1, 3, 5, 6, 5, 3, 1 before. In fact, this was the answer to the problem for several pairs of (n, k), namely (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6). I looked at what was on both sides of this subsequence and was amazed to see that it was all valid (i.e. greater than 0 permutations) answers for n < 4 and n > 4.
The formula for the sequence was given as:
coefficients in expansion of Product_{i=0..n-1} (1+x+...+x^i)
This was easy enough for me to understand and verify. I could basically take any n and plug into the formula. Then the coefficient for the xk term would be the answer for (n, k).
I will show an example for n = 3.
(x0)(x0 + 1)(x0 + x1 + x2)
= (1)(1 + x)(1 + x + x2)
= (1 + x)(1 + x + x2)
= 1 + x + x + x2 + x2 + x3
= 1 + 2x + 2x2 + x3
The final expansion was 1 + 2x + 2x2 + x3 and the coefficients of the xk terms were 1, 2, 2, and 1 for k = 0, 1, 2, 3 respectively. This just happens to be all valid numbers of inversions for 3-element permutations.
1, 2, 2, 1 is the 3rd row of the Mahonian numbers when they are laid out in a table as follows:
1
1 1
1 2 2 1
1 3 5 6 5 3 1
etc.
So basically computing my answer came down to simply calculating the nth Mahonian row and taking the kth element with k starting at 0 and printing 0 if the index was out of range. This was a simple case of bottom-up dynamic programming since each ith row could be used to easily compute the i+1st row.
Given below is the Python solution I used which ran in only 0.02 seconds. The maximum time limit for this problem was 3 seconds for their given test cases and I was getting a timeout error before so I think this optimization is rather good.
def mahonian_row(n):
'''Generates coefficients in expansion of
Product_{i=0..n-1} (1+x+...+x^i)
**Requires that n is a positive integer'''
# Allocate space for resulting list of coefficients?
# Initialize them all to zero?
#max_zero_holder = [0] * int(1 + (n * 0.5) * (n - 1))
# Current max power of x i.e. x^0, x^0 + x^1, x^0 + x^1 + x^2, etc.
# i + 1 is current row number we are computing
i = 1
# Preallocate result
# Initialize to answer for n = 1
result = [1]
while i < n:
# Copy previous row of n into prev
prev = result[:]
# Get space to hold (i+1)st row
result = [0] * int(1 + ((i + 1) * 0.5) * (i))
# Initialize multiplier for this row
m = [1] * (i + 1)
# Multiply
for j in range(len(m)):
for k in range(len(prev)):
result[k+j] += m[j] * prev[k]
# Result now equals mahonian_row(i+1)
# Possibly should be memoized?
i = i + 1
return result
def main():
t = int(raw_input())
for _ in xrange(t):
n, k = (int(s) for s in raw_input().split())
row = mahonian_row(n)
if k < 0 or k > len(row) - 1:
print 0
else:
print row[k]
if __name__ == '__main__':
main()
I have no idea of the time complexity but I am absolutely certain this code can be improved through memoization since there are 10 given test cases and the computations for previous test cases can be used to "cheat" on future test cases. I will make that optimization in the future, but hopefully this answer in its current state will help anyone attempting this problem in the future since it avoids the naive factorial-complexity approach of generating and iterating through all permutations.