Is it possible to share a semaphore (or any other synchronization lock) between user space and kernel space? Named POSIX semaphores have kernel persi
I would like to answer this differently: you don't want to do this. There are good reasons why there is no interface to do this kind of thing and there are good reasons why all other kernel subsystems are designed and implemented to never need a lock shared between user and kernel space. The complexity of lock ordering and implicit locking in unexpected places will quickly get out of hand if you start playing around with userland that can prevent the kernel from doing certain things.
Let me recall a very long debugging session I did around 15 years ago to at least shed some light what complex problems you can run into. I was involved in developing a file system where the large portion of the code was in userland. Something like FUSE.
The kernel would do a filesystem operation, package it into a message and send it to the userland daemon and wait for a reply. The userland daemon reads the message, does stuff and writes a reply to the kernel which wakes up and continues with the operation. Simple concept.
One thing you need to understand about filesystems is locking. When you're looking up a name of a file, for example "foo/bar", the kernel somehow gets the node for the directory "foo" then locks it and asks it if it has the file "bar". The filesystem code somehow finds "bar", locks it and then unlocks "foo". The locking protocol is quite straight forward (unless you're doing a rename), parent always gets locked before the child and the child is locked before the parent lock is released. The lookup message for the file is what would get sent to our userland daemon while the directory was still locked, when the daemon replied the kernel would proceed to first lock "bar" and then unlock "foo".
I don't even remember the symptoms we were debugging, but I remember the issue was not trivially reproducible, it required hours and hours of filesystem torture programs until it manifested itself. But after a few weeks we figured out what was going on. Let's say that the full path to our file was "/a/b/c/foo/bar". We're in the process of doing a lookup on "bar", which means that we're holding the lock on "foo". The daemon is a normal userland process so some operations it does can block and can be preempted too. It's actually talking over the network so it can block for a long time. While we're waiting for the userland daemon some other process want to look up "foo" for some reason. To do this, it has the node for "c", locked of course, and asks it to look up "foo". It manages to find it and attempts to lock it (it has to be locked before we can release the lock on "c") and waits for the lock on "foo" to be released. Another process comes in an wants to look up "c", it of course ends up waiting for that lock while holding the lock on "b". Another process waits for "b" and holds "a". Yet another process wants "a" and holds the lock on "/".
This is not a problem, not yet. This sometimes happens in normal filesystems too, locks can cascade all the way up to the root, you wait for a while for a slow disk, the disk responds, the congestions eases up and everyone gets their locks and everything keeps running fine. In our case though, the reason for holding the lock a long time was because the remote server for our distributed filesystem didn't respond. X seconds later the userland daemon times out and just before responding to the kernel that the lookup operation on "bar" has failed it logs a message to syslog with a timestamp. One of the things that the timestamp needs is the timezone information, so it needs to open "/etc/localtime", of course to do that, it needs to start looking up "/etc" and for that it needs to lock "/". "/" is already locked by someone else, so the userland daemon waits for that someone else to unlock "/" while that someone else waits through a chain of 5 processes and locks for the daemon to respond. The system ends up in a total deadlock.
Now, maybe your code will not have problems like this. You're talking about a real-time system so there might be a level of control you have that normal kernels don't. But I'm not sure if adding an unexpected layer of locking complexity would even let you keep real time properties of the system, or really make sure that nothing you do in userland will ever create a deadlock cascade. If you don't page, if you never touch any file descriptor, if you never do memory operations and a bunch of other things I can't really think of right now you could get away with a lock shared between userland and kernel, but it will be hard and you'll probably find unexpected problems.