I found this challenge problem which states the following :
Suppose that there are n rectangles on the XY plane. Write a program to calculate the maxi
(Edit of my earlier answer that considered rotating the plane.)
Here's sketch of the O(n^2) algorithm, which combines Gassa's idea with Evgeny Kluev's reference to dual line arrangements as sorted angular sequences.
We start out with a doubly connected edge list or similar structure, allowing us to split an edge in O(1) time, and a method to traverse the faces we create as we populate a 2-dimensional plane. For simplicity, let's use just three of the twelve corners on the rectangles below:
9| (5,9)___(7,9)
8| | |
7| (4,6)| |
6| ___C | |
5| | | | |
4| |___| | |
3| ___ |___|(7,3)
2| | | B (5,3)
1|A|___|(1,1)
|_ _ _ _ _ _ _ _
1 2 3 4 5 6 7
We insert the three points (corners) in the dual plane according to the following transformation:
point p => line p* as a*p_x - p_y
line l as ax + b => point l* as (a, -b)
Let's enter the points in order A, B, C. We first enter A => y = x - 1. Since there is only one edge so far, we insert B => y = 5x - 3, which creates the vertex, (1/2, -1/2) and splits our edge. (One elegant aspect of this solution is that each vertex (point) in the dual plane is actually the dual point of the line passing through the rectangles' corners. Observe 1 = 1/2*1 + 1/2 and 3 = 1/2*5 + 1/2, points (1,1) and (5,3).)
Entering the last point, C => y = 4x - 6, we now look for the leftmost face (could be an incomplete face) where it will intersect. This search is O(n) time since we have to try each face. We find and create the vertex (-3, -18), splitting the lower edge of 5x - 3 and traverse up the edges to split the right half of x - 1 at vertex (5/3, 2/3). Each insertion has O(n) time since we must first find the leftmost face, then traverse each face to split edges and mark the vertices (intersection points for the line).
In the dual plane we now have:
After constructing the line arrangement, we begin our iteration on our three example points (rectangle corners). Part of the magic in reconstructing a sorted angular sequence in relation to one point is partitioning the angles (each corresponding with an ordered line intersection in the dual plane) into those corresponding with a point on the right (with a greater x-coordinate) and those on the left and concatenating the two sequences to get an ordered sequence from -90 deg to -270 degrees. (The points on the right transform to lines with positive slopes in relation to the fixed point; the ones on left, with negative slopes. Rotate your sevice/screen clockwise until the line for (C*) 4x - 6 becomes horizontal and you'll see that B* now has a positive slope and A* negative.)
Why does it work? If a point p in the original plane is transformed into a line p* in the dual plane, then traversing that dual line from left to right corresponds with rotating a line around p in the original plane that also passes through p. The dual line marks all the slopes of this rotating line by the x-coordinate from negative infinity (vertical) to zero (horizontal) to infinity (vertical again).
(Let's summarize the rectangle-count-logic, updating the count_array for the current rectangle while iterating through the angular sequence: if it's 1, increment the current intersection count; if it's 4 and the line is not directly on a corner, set it to 0 and decrement the current intersection count.)
Pick A, lookup A*
=> x - 1.
Obtain the concatenated sequence by traversing the edges in O(n)
=> [(B*) 5x - 3, (C*) 4x - 6] ++ [No points left of A]
Initialise an empty counter array, count_array of length n-1
Initialise a pointer, ptr, to track rectangle corners passed in
the opposite direction of the current vector.
Iterate:
vertex (1/2, -1/2)
=> line y = 1/2x + 1/2 (AB)
perform rectangle-count-logic
if the slope is positive (1/2 is positive):
while the point at ptr is higher than the line:
perform rectangle-count-logic
else if the slope is negative:
while the point at ptr is lower than the line:
perform rectangle-count-logic
=> ptr passes through the rest of the points up to the corner
across from C, so intersection count is unchanged
vertex (5/3, 2/3)
=> line y = 5/3x - 2/3 (AC)
We can see that (5,9) is above the line through AC (y = 5/3x - 2/3), which means at this point we would have counted the intersection with the rightmost rectangle and not yet reset the count for it, totaling 3 rectangles for this line.
We can also see in the graph of the dual plane, the other angular sequences:
for point B => B* => 5x - 3: [No points right of B] ++ [(C*) 4x - 6, (A*) x - 1]
for point C => C* => 4x - 6: [(B*) 5x - 3] ++ [(A*) x - 1]
(note that we start at -90 deg up to -270 deg)