Is it possible to create a calendar heatmap without using pandas? If so, can someone post a simple example?
I have dates like Aug-16 and a count value like 16 and I
Below is a code that can be used to generate a calendar map for daily profiles of a value.
"""
Created on Tue Sep 4 11:17:25 2018
@author: woldekidank
"""
import numpy as np
from datetime import date
import datetime
import matplotlib.pyplot as plt
import random
D = date(2016,1,1)
Dord = date.toordinal(D)
Dweekday = date.weekday(D)
Dsnday = Dord - Dweekday + 1 #find sunday
square = np.array([[0, 0],[ 0, 1], [1, 1], [1, 0], [0, 0]])#x and y to draw a square
row = 1
count = 0
while row != 0:
for column in range(1,7+1): #one week per row
prof = np.ones([24, 1])
hourly = np.zeros([24, 1])
for i in range(1,24+1):
prof[i-1, 0] = prof[i-1, 0] * random.uniform(0, 1)
hourly[i-1, 0] = i / 24
plt.title('Temperature Profile')
plt.plot(square[:, 0] + column - 1, square[:, 1] - row + 1,color='r') #go right each column, go down each row
if date.fromordinal(Dsnday).month == D.month:
if count == 0:
plt.plot(hourly, prof)
else:
plt.plot(hourly + min(square[:, 0] + column - 1), prof + min(square[:, 1] - row + 1))
plt.text(column - 0.5, 1.8 - row, datetime.datetime.strptime(str(date.fromordinal(Dsnday)),'%Y-%m-%d').strftime('%a'))
plt.text(column - 0.5, 1.5 - row, date.fromordinal(Dsnday).day)
Dsnday = Dsnday + 1
count = count + 1
if date.fromordinal(Dsnday).month == D.month:
row = row + 1 #new row
else:
row = 0 #stop the while loop
Below is the output from this code