I have computed a test statistic that is distributed as a chi square with 1 degree of freedom, and want to find out what P-value this corresponds to using python.
I
If you want to understand the math, the p-value of a sample, x (fixed), is
P[P(X) <= P(x)] = P[m(X) >= m(x)] = 1 - G(m(x)^2)
where,
So if you're computing the p-value of a fixed observation, x, then you compute m(x) (generalized z-score), and 1-G(m(x)^2).
for example, it's well known that if x is sampled from a univariate (k = 1) normal distribution and has z-score = 2 (it's 2 standard deviations from the mean), then the p-value is about .046 (see a z-score table)
In [7]: from scipy.stats import chi2
In [8]: k = 1
In [9]: z = 2
In [10]: 1-chi2.cdf(z**2, k)
Out[10]: 0.045500263896358528