Is there any way, I can add simple L1/L2 regularization in PyTorch? We can probably compute the regularized loss by simply adding the data_loss
with the r
Interesting torch.norm
is slower on CPU and faster on GPU vs. direct approach.
import torch
x = torch.randn(1024,100)
y = torch.randn(1024,100)
%timeit torch.sqrt((x - y).pow(2).sum(1))
%timeit torch.norm(x - y, 2, 1)
Out:
1000 loops, best of 3: 910 µs per loop
1000 loops, best of 3: 1.76 ms per loop
On the other hand:
import torch
x = torch.randn(1024,100).cuda()
y = torch.randn(1024,100).cuda()
%timeit torch.sqrt((x - y).pow(2).sum(1))
%timeit torch.norm(x - y, 2, 1)
Out:
10000 loops, best of 3: 50 µs per loop
10000 loops, best of 3: 26 µs per loop