I\'m thinking I should familiarize myself with x86 SIMD extensions. But before I even began I ran into trouble. I can\'t find a good overview on which of them are still rele
I recently updated the tag wikis for SSE, AVX, and x86 (and SSE2, avx2). They cover a lot of this. tl;dr summary: AVX rolls up all the previous SSE versions, and provides 3-operand versions of those instructions. Also 256b versions of most FP (AVX) and int (AVX2) insns.
For summaries of the various SSE versions, see wikipedia, or knm241's more-detailed answer.
We don't really think of that making SSE obsolete. More like, think of AVX as a new and better version of the same old SSE instructions. They're still in the ref manual under their non-AVX names (PSHUFB, not VPSHUFB, for example.) You can mix AVX and SSE code, as long as you use VZEROUPPER when needed to avoid the performance problem from mixing VEX with non-VEX insns (on Intel). So there is some annoyance to dealing with cases where you have to call into libraries that might run non-VEX SSE instructions, or where your code uses SSE FP math, but also has some AVX code to be run only if the CPU supports it.
If CPU-compatibility was a non-issue, the legacy-SSE versions of vector instructions would be truly obsolete, like MMX is now. AVX/AVX2 is at least slightly better in every way, if you count the VEX-encoded 128b version an insn as AVX, not SSE. Sometimes you'd still use 128b registers because your data only comes in chunks that big, but more often working with 256b registers to do the same op on twice as much data at once.
SSE/AVX/x87-FP/integer instructions all use the same execution ports. You can't get more done in parallel by mixing them. (except on Haswell, where one of the 4 ALU ports can only handle non-vector insns, like GP reg ops and branches).