I\'m interested, how is the dual input in a sensor fusioning setup in a Kalman filter modeled?
Say for instance that you have an accelerometer and a gyro and want to
The gyro measures rate of angle change (e.g. in radians per sec), while from accelerometer reading you can calculate the angle itself. Here is a simple way of combining these measurements:
At every gyro reading received:
angle_radians+=gyro_reading_radians_per_sec * seconds_since_last_gyro_reading
At every accelerometer reading received:
angle_radians+=0.02 * (angle_radians_from_accelerometer - angle_radians)
The 0.02 constant is for tuning - it selects the tradeoff between noise rejection and responsiveness (you can't have both at the same time). It also depends on the accuracy of both sensors, and the time intervals at which new readings are received.
These two lines of code implement a simple 1-dimensional (scalar) Kalman filter. It assumes that
As you see, this approach is simplified. If the above assumptions are not met, you should learn some Kalman filter theory, and modify the code accordingly.