If the pre-order traversal of a binary search tree is 6, 2, 1, 4, 3, 7, 10, 9, 11, how to get the post-order traversal?
Since, it is a binary search tree, the inorder traversal will be always be the sorted elements. (left < root < right)
so, you can easily write its in-order traversal results first, which is : 1,2,3,4,6,7,9,10,11
given Pre-order : 6, 2, 1, 4, 3, 7, 10, 9, 11
In-order : left, root, right Pre-order : root, left, right Post-order : left, right, root
now, we got from pre-order, that root is 6.
now, using in-order and pre-order results: Step 1:
6
/ \
/ \
/ \
/ \
{1,2,3,4} {7,9,10,11}
Step 2: next root is, using in-order traversal, 2:
6
/ \
/ \
/ \
/ \
2 {7,9,10,11}
/ \
/ \
/ \
1 {3,4}
Step 3: Similarly, next root is 4:
6
/ \
/ \
/ \
/ \
2 {7,9,10,11}
/ \
/ \
/ \
1 4
/
3
Step 4: next root is 3, but no other element is remaining to be fit in the child tree for "3". Considering next root as 7 now,
6
/ \
/ \
/ \
/ \
2 7
/ \ \
/ \ {9,10,11}
/ \
1 4
/
3
Step 5: Next root is 10 :
6
/ \
/ \
/ \
/ \
2 7
/ \ \
/ \ 10
/ \ / \
1 4 9 11
/
3
This is how, you can construct a tree, and finally find its post-order traversal, which is : 1, 3, 4, 2, 9, 11, 10, 7, 6