If the pre-order traversal of a binary search tree is 6, 2, 1, 4, 3, 7, 10, 9, 11, how to get the post-order traversal?
I know this is old but there is a better solution.
We don't have to reconstruct a BST to get the post-order from the pre-order.
Here is a simple python code that does it recursively:
import itertools
def postorder(preorder):
if not preorder:
return []
else:
root = preorder[0]
left = list(itertools.takewhile(lambda x: x < root, preorder[1:]))
right = preorder[len(left) + 1:]
return postorder(left) + postorder(right) + [root]
if __name__ == '__main__':
preorder = [20, 10, 6, 15, 30, 35]
print(postorder(preorder))
Output:
[6, 15, 10, 35, 30, 20]
Explanation:
We know that we are in pre-order. This means that the root is at the index 0 of the list of the values in the BST. And we know that the elements following the root are:
root, which belong to the left subtree of the rootroot, which belong to the right subtree of the rootWe then just call recursively the function on both subtrees (which still are in pre-order) and then chain left + right + root (which is the post-order).