The Python library pandas can read Excel spreadsheets and convert them to a pandas.DataFrame with pandas.read_excel(file) command. Under the hood,
You can read ODF (Open Document Format .ods) documents in Python using the following modules:
Using ezodf, a simple ODS-to-DataFrame converter could look like this:
import pandas as pd
import ezodf
doc = ezodf.opendoc('some_odf_spreadsheet.ods')
print("Spreadsheet contains %d sheet(s)." % len(doc.sheets))
for sheet in doc.sheets:
print("-"*40)
print(" Sheet name : '%s'" % sheet.name)
print("Size of Sheet : (rows=%d, cols=%d)" % (sheet.nrows(), sheet.ncols()) )
# convert the first sheet to a pandas.DataFrame
sheet = doc.sheets[0]
df_dict = {}
for i, row in enumerate(sheet.rows()):
# row is a list of cells
# assume the header is on the first row
if i == 0:
# columns as lists in a dictionary
df_dict = {cell.value:[] for cell in row}
# create index for the column headers
col_index = {j:cell.value for j, cell in enumerate(row)}
continue
for j, cell in enumerate(row):
# use header instead of column index
df_dict[col_index[j]].append(cell.value)
# and convert to a DataFrame
df = pd.DataFrame(df_dict)
P.S.
ODF spreadsheet (*.ods files) support has been requested on the pandas issue tracker: https://github.com/pydata/pandas/issues/2311, but it is still not implemented.
ezodf was used in the unfinished PR9070 to implement ODF support in pandas. That PR is now closed (read the PR for a technical discussion), but it is still available as an experimental feature in this pandas fork.