Dеar Scala,
scala> val f1: ((Int, Int)) => Int = { case (a, b) => a + b }
f1: ((Int, Int)) => Int =
scala> val f2: (Int, In
See section 8.5 of the Scala reference (http://www.scala-lang.org/files/archive/nightly/pdfs/ScalaReference.pdf). The expression { case (a, b) => a + b } is interpreted differently based on the expected type. In your definition of f1 it created a PartialFunction[(Int, Int), Int] which was cast to a Function1[(Int, Int), Int], i.e. ((Int, Int)) => Int whereas in the definition of f2 it created a Function2[Int, Int, Int], i.e. (Int, Int) => Int.
These two interpretations relate to the two situations where you would commonly use case in an anonymous function.
One is for writing anonymous functions that accept tuples and work on their components, as you did with f1. An example would be the function you pass to the foreach or map method on a Map, e.g. Map(1 -> 2, 3 -> 4) map { case (k, v) => k + v }.
The second is for writing an anonymous function that does a match on its sole parameter. Your f2 is doing this, but not in any useful way. An example would be the anonymous function passed to collect, e.g. List(1, -2, 3) collect { case x if x > 0 => -x }.
Note that the two can be combined, that is functions like f1 can do complex matching as well. For example, Map(1 -> 2, 3 -> 4) collect { case (k, v) if k < 2 => v }.
Edit: res2 works because of tupling. If an application doesn't type check, the compiler will try wrapping the args in a tuple before failing.
But that is tried just for applications; it's not a general conversion, as you discovered. It will not try to upgrade a value Function2[A, B, C] to Function1[(A, B), C].