How to normalize the Train and Test data using MinMaxScaler sklearn

前端 未结 2 662
天涯浪人
天涯浪人 2020-12-23 18:09

So, I have this doubt and have been looking for answers. So the question is when I use,

from sklearn import preprocessing
min_max_scaler = preprocessing.MinM         


        
2条回答
  •  旧巷少年郎
    2020-12-23 18:47

    Best way is train and save MinMaxScaler model and load the same when it's required.

    Saving model:

    df = pd.DataFrame({'A':[1,2,3,7,9,15,16,1,5,6,2,4,8,9],'B':[15,12,10,11,8,14,17,20,4,12,4,5,17,19],'C':['Y','Y','Y','Y','N','N','N','Y','N','Y','N','N','Y','Y']})
    df[['A','B']] = min_max_scaler.fit_transform(df[['A','B']])  
    pickle.dump(min_max_scaler, open("scaler.pkl", 'wb'))
    

    Loading saved model:

    scalerObj = pickle.load(open("scaler.pkl", 'rb'))
    df_test = pd.DataFrame({'A':[25,67,24,76,23],'B':[2,54,22,75,19]})
    df_test[['A','B']] = scalerObj.transform(df_test[['A','B']])
    

提交回复
热议问题