As a newbie in Machine Learning, I have a set of trajectories that may be of different lengths. I wish to cluster them, because some of them are actually the same pa
Neither will work. Because what is a proper mean here?
Have a look at distance based clustering methods, such as hierarchical clustering (for small data sets, but you probably don't have thousands of trajectories) and DBSCAN.
Then you only need to choose an appropriate distance function that allows e.g. differences in time and spatial resolution of trajectories.
Distance functions such as dynamic time warping (DTW) distance can accomodate this.