I'm tackling exactly this problem, and I had completely spaced iCalendar (rfc 2445) up until reading this thread, so I have no idea how well this will or won't integrate with that. Anyway the design I've come up with so far looks something like this:
- You can't possibly store all the instances of a recurring event, at least not before they occur, so I simply have one table that stores the first instance of the event as an actual date, an optional expiration, and nullable repeat_unit and repeat_increment fields to describe the repetition. For single instances the repition fields are null, otherwise the units will be 'day', 'week', 'month', 'year' and increment is simply the multiple of units to add to start date for the next occurrence.
- Storing past events only seems advantageous if you need to establish relationships with other entities in your model, and even then it's not necessary to have an explicit "event instance" table in every case. If the other entities already have date/time "instance" data then a foreign key to the event (or join table for a many-to-many) would most likely be sufficient.
- To do "change this instance"/"change all future instances", I was planning on just duplicating the events and expiring the stale ones. So to change a single instances, you'd expire the old one at it's last occurrence, make a copy for the new, unique occurrence with the changes and without any repetition, and another copy of the original at the following occurrence that repeats into the future. Changing all future instances is similar, you would just expire the original and make a new copy with the changes and repition details.
The two problems I see with this design so far are:
- It makes MWF-type events hard to represent. It's possible, but forces the user to create three separate events that repeat weekly on M,W,F individually, and any changes they want to make will have to be done on each one separately as well. These kind of events aren't particularly useful in my app, but it does leave a wart on the model that makes it less universal than I'd like.
- By copying the events to make changes, you break the association between them, which could be useful in some scenarios (or, maybe it would just be occasionally problematic.) The event table could theoretically contain a "copied_from" id field to track where an event originated, but I haven't fully thought through how useful something like that would be. For one thing, parent/child hierarchical relationships are a pain to query from SQL, so the benefits would need to be pretty heavy to outweigh the cost for querying that data. You could use a nested-set instead, I suppose.
Lastly I think it's possible to compute events for a given timespan using straight SQL, but I haven't worked out the exact details and I think the queries usually end up being too cumbersome to be worthwhile. However for the sake of argument, you can use the following expression to compute the difference in months between the given month and year an event:
(:month + (:year * 12)) - (MONTH(occursOn) + (YEAR(occursOn) * 12))
Building on the last example, you could use MOD to determine whether difference in months is the correct multiple:
MOD(:month + (:year * 12)) - (MONTH(occursOn) + (YEAR(occursOn) * 12), repeatIncrement) = 0
Anyway this isn't perfect (it doesn't ignore expired events, doesn't factor in start / end times for the event, etc), so it's only meant as a motivating example. Generally speaking though I think most queries will end up being too complicated. You're probably better off querying for events that occur during a given range, or don't expire before the range, and computing the instances themselves in code rather than SQL. If you really want the database to do the processing then a stored procedure would probably make your life a lot easier.