I\'m using the MinMaxScaler
model in sklearn to normalize the features of a model.
training_set = np.random.rand(4,4)*10
training_set
[[
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.externals import joblib
pipeline = make_pipeline(MinMaxScaler(),YOUR_ML_MODEL() )
model = pipeline.fit(X_train, y_train)
joblib.dump(model, 'filename.mod')
model = joblib.load('filename.mod')