I see that the imageDataGenerator allows me to specify different styles of data normalization, e.g. featurewise_center, samplewise_center, etc.
I see from the exampl
I am using the datagen.fit
function itself.
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True)
train_datagen.fit(train_data)
test_datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True)
test_datagen.fit(train_data)
Ideally with this, test_datagen
fitted on training dataset will learn the training datasets statistics. Then it will use these statistics to normalize testing data.