I see that the imageDataGenerator allows me to specify different styles of data normalization, e.g. featurewise_center, samplewise_center, etc.
I see from the exampl
Use the standardize method of the generator for each element. Here is a complete example for CIFAR 10:
#!/usr/bin/env python
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
# input image dimensions
img_rows, img_cols, img_channels = 32, 32, 3
num_classes = 10
batch_size = 32
epochs = 1
# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', activation='relu',
input_shape=x_train.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
datagen = ImageDataGenerator(zca_whitening=True)
# Compute principal components required for ZCA
datagen.fit(x_train)
# Apply normalization (ZCA and others)
print(x_test.shape)
for i in range(len(x_test)):
# this is what you are looking for
x_test[i] = datagen.standardize(x_test[i])
print(x_test.shape)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs,
validation_data=(x_test, y_test))