I have a df in pandas
import pandas as pd
df = pd.DataFrame([\'AA\', \'BB\', \'CC\'], columns = [\'value\'])
I want to iterate over rows in
I would use shift() function as follows:
df['value_1'] = df.value.shift(-1)
[print(x) for x in df.T.unstack().dropna(how = 'any').values];
which produces
AA
BB
BB
CC
CC
This is how the code above works:
Step 1) Use shift function
df['value_1'] = df.value.shift(-1)
print(df)
produces
value value_1
0 AA BB
1 BB CC
2 CC NaN
step 2) Transpose:
df = df.T
print(df)
produces:
0 1 2
value AA BB CC
value_1 BB CC NaN
Step 3) Unstack:
df = df.unstack()
print(df)
produces:
0 value AA
value_1 BB
1 value BB
value_1 CC
2 value CC
value_1 NaN
dtype: object
Step 4) Drop NaN values
df = df.dropna(how = 'any')
print(df)
produces:
0 value AA
value_1 BB
1 value BB
value_1 CC
2 value CC
dtype: object
Step 5) Return a Numpy representation of the DataFrame, and print value by value:
df = df.values
[print(x) for x in df];
produces:
AA
BB
BB
CC
CC