I\'m pretty new to keras I have built a simple network to try:
import numpy as np;
from keras.models import Sequential;
from keras.layers import Dense,Activ
Your model seems to correspond to a regression model for the following reasons:
You are using linear (the default one) as an activation function in the output layer (and relu in the layer before).
Your loss is loss='mean_squared_error'.
However, the metric that you use- metrics=['accuracy'] corresponds to a classification problem. If you want to do regression, remove metrics=['accuracy']. That is, use
model.compile(optimizer='adam',loss='mean_squared_error')
Here is a list of keras metrics for regression and classification (taken from this blog post):
Keras Regression Metrics
•Mean Squared Error: mean_squared_error, MSE or mse
•Mean Absolute Error: mean_absolute_error, MAE, mae
•Mean Absolute Percentage Error: mean_absolute_percentage_error, MAPE, mape
•Cosine Proximity: cosine_proximity, cosine
Keras Classification Metrics
•Binary Accuracy: binary_accuracy, acc
•Categorical Accuracy: categorical_accuracy, acc
•Sparse Categorical Accuracy: sparse_categorical_accuracy
•Top k Categorical Accuracy: top_k_categorical_accuracy (requires you specify a k parameter)
•Sparse Top k Categorical Accuracy: sparse_top_k_categorical_accuracy (requires you specify a k parameter)