Another disadvantage of #2 is that the caller doesn't have control over how things are allocated. This can be worked around by providing an API for the client to register his own allocation/deallocation functions (like SDL does), but even that may not be sufficiently fine-grained.
The disadvantage of #1 is that it doesn't work well when output buffers are not fixed-size (e.g. strings). At best, you will then need to provide another function to obtain the length of the buffer first so that the caller can allocate it. At worst, it is simply impossible to do so efficiently (i.e. computing length on a separate path is overly expensive over computing-and-copying in one go).
The advantage of #2 is that it allows you to expose your datatype strictly as an opaque pointer (i.e. declare the struct but don't define it, and use pointers consistently). Then you can change the definition of the struct as you see fit in future versions of your library, while clients remain compatible on binary level. With #1, you have to do it by requiring the client to specify the version inside the struct in some way (e.g. all those cbSize
fields in Win32 API), and then manually write code that can handle both older and newer versions of the struct to remain binary-compatible as your library evolves.
In general, if your structs are transparent data which will not change with future minor revision of the library, I'd go with #1. If it is a more or less complicated data object and you want full encapsulation to fool-proof it for future development, go with #2.