I have a cluster of 3 ElasticSearch nodes running on AWS EC2. These nodes are setup using OpsWorks/Chef. My intent is to design this cluster to be very resilient and elast
I believe load balancing an Elasticsearch cluster is a good idea (designing a fault tolerant system, resilient to single node failure.)
To architect your cluster you'll need background on the two primary functions of Elasticsearch: 1. Writing and updating documents and 2. Querying Documents.
Writing / indexing documents in elasticsearch:
Querying documents in Elasticsearch:
Architect a Load Balancer for Writes / Indexing / Updates
Elasticsearch self manages the location of shards on nodes. The "master node" keeps and updates the "shard routing table". The "master node" provides a copy of the shard routing table to other nodes in the cluster.
Generally, you don't want your master node doing much more than health checks for the cluster and updating routing tables, and managing shards.
It's probably best to point the load balancer for writes to the "data nodes" (Data nodes are nodes that contain data = shards) and let the data nodes use their shard routing tables to get the writes to the correct shards.
Architecting for Queries
Elasticsearch has created a special node type: "client node", which contains "no data", and cannot become a "master node". The client node's function is to perform the final resource heavy merge-sort at the end of the query.
For AWS you'd probably use a c3 or c4 instance type as a "client node"
Best practice is to point the load balancer for queries to client nodes.
Cheers!
References: