given an array of 0s and 1s, find maximum subarray such that number of zeros and 1s are equal. This needs to be done in O(n) time and O(1) space.
I have an algo whic
I have this algorithm running in O(n) time and O(1) space.
public static void longestSubArrayWithSameZerosAndOnes() {
// You are given an array of 1's and 0's only.
// Find the longest subarray which contains equal number of 1's and 0's
int[] A = new int[] {1, 0, 1, 1, 1, 0, 0,0,1};
int num0 = 0, num1 = 0;
// First, calculate how many 0s and 1s in the array
for(int i = 0; i < A.length; i++) {
if(A[i] == 0) {
num0++;
}
else {
num1++;
}
}
if(num0 == 0 || num1 == 0) {
System.out.println("The length of the sub-array is 0");
return;
}
// Second, check the array to find a continuous "block" that has
// the same number of 0s and 1s, starting from the HEAD and the
// TAIL of the array, and moving the 2 "pointer" (HEAD and TAIL)
// towards the CENTER of the array
int start = 0, end = A.length - 1;
while(num0 != num1 && start < end) {
if(num1 > num0) {
if(A[start] == 1) {
num1--; start++;
}
else if(A[end] == 1) {
num1--; end--;
}
else {
num0--; start++;
num0--; end--;
}
}
else if(num1 < num0) {
if(A[start] == 0) {
num0--; start++;
}
else if(A[end] == 0) {
num0--; end--;
}
else {
num1--; start++;
num1--; end--;
}
}
}
if(num0 == 0 || num1 == 0) {
start = end;
end++;
}
// Third, expand the continuous "block" just found at step #2 by
// moving "HEAD" to head of the array and "TAIL" to the end of
// the array, while still keeping the "block" balanced(containing
// the same number of 0s and 1s
while(0 < start && end < A.length - 1) {
if(A[start - 1] == 0 && A[end + 1] == 0 || A[start - 1] == 1 && A[end + 1] == 1) {
break;
}
start--;
end++;
}
System.out.println("The length of the sub-array is " + (end - start + 1) + ", starting from #" + start + " to #" + end);