In one of my first attempts to create functional code, I ran into a performance issue.
I started with a common task - multiply the elements of two arrays and sum up
This is a microbenchmark, and it depends on how the compiler optimizes you code. You have 3 loops composed here,
zip . map . fold
Now, I'm fairly sure the Scala compiler cannot fuse those three loops into a single loop, and the underlying data type is strict, so each (.) corresponds to an intermediate array being created. The imperative/mutable solution would reuse the buffer each time, avoiding copies.
Now, an understanding of what composing those three functions means is key to understanding performance in a functional programming language -- and indeed, in Haskell, those three loops will be optimized into a single loop that reuses an underlying buffer -- but Scala cannot do that.
There are benefits to sticking to the combinator approach, however -- by distinguishing those three functions, it will be easier to parallelize the code (replace map with parMap etc). In fact, given the right array type, (such as a parallel array) a sufficiently smart compiler will be able to automatically parallelize your code, yielding more performance wins.
So, in summary: