I recently wrote a short algorithm to calculate happy numbers in python. The program allows you to pick an upper bound and it will determine all the happy numbers below it.
This is my second answer; which caches things like sum of squares for values <= 10**6:
happy_list[sq_list[x%happy_base] + sq_list[x//happy_base]]
That is,
I don't think Python version can be made much faster than that (ok, if you throw away fallback to old version, that is try: overhead, it's 10% faster).
I think this is an excellent question which shows that, indeed,
Ok, here it goes (2nd version now...):
#!/usr/bin/env python3
'''Provides slower and faster versions of a function to compute happy numbers.
slow_happy() implements the algorithm as in the definition of happy
numbers (but also caches the results).
happy() uses the precomputed lists of sums of squares and happy numbers
to return result in just 3 list lookups and 3 arithmetic operations for
numbers less than 10**6; it falls back to slow_happy() for big numbers.
Utilities: digits() generator, my_timeit() context manager.
'''
from time import time # For my_timeit.
from random import randint # For example with random number.
upperBound = 10**5 # Default value, can be overridden by user.
class my_timeit:
'''Very simple timing context manager.'''
def __init__(self, message):
self.message = message
self.start = time()
def __enter__(self):
return self
def __exit__(self, *data):
print(self.message.format(time() - self.start))
def digits(x:'nonnegative number') -> "yields number's digits":
if not (x >= 0): raise ValueError('Number should be nonnegative')
while x:
yield x % 10
x //= 10
def slow_happy(number, known = {1}, happies = {1}) -> 'True/None':
'''Tell if the number is happy or not, caching results.
It uses two static variables, parameters known and happies; the
first one contains known happy and unhappy numbers; the second
contains only happy ones.
If you want, you can pass your own known and happies arguments. If
you do, you should keep the assumption commented out on the 1 line.
'''
# This is commented out because <= is expensive.
# assert {1} <= happies <= known
if number in known:
return number in happies
history = set()
while True:
history.add(number)
number = sum(x**2 for x in digits(number))
if number in known or number in history:
break
known.update(history)
if number in happies:
happies.update(history)
return True
# This will define new happy() to be much faster ------------------------.
with my_timeit('Preparation time was {0} seconds.\n'):
LogAbsoluteUpperBound = 6 # The maximum possible number is 10**this.
happy_list = [slow_happy(x)
for x in range(81*LogAbsoluteUpperBound + 1)]
happy_base = 10**((LogAbsoluteUpperBound + 1)//2)
sq_list = [sum(d**2 for d in digits(x))
for x in range(happy_base + 1)]
def happy(x):
'''Tell if the number is happy, optimized for smaller numbers.
This function works fast for numbers <= 10**LogAbsoluteUpperBound.
'''
try:
return happy_list[sq_list[x%happy_base] + sq_list[x//happy_base]]
except IndexError:
return slow_happy(x)
# End of happy()'s redefinition -----------------------------------------.
def calcMain(print_numbers, upper_bound):
happies = [x for x in range(upper_bound + 1) if happy(x)]
if print_numbers:
print(happies)
if __name__ == '__main__':
while True:
upperBound = eval(input(
"Pick an upper bound [{0} default, 0 ends, negative number prints]: "
.format(upperBound)).strip() or repr(upperBound))
if not upperBound:
break
with my_timeit('This computation took {0} seconds.'):
calcMain(upperBound < 0, abs(upperBound))
single = 0
while not happy(single):
single = randint(1, 10**12)
print('FYI, {0} is {1}.\n'.format(single,
'happy' if happy(single) else 'unhappy'))
print('Nice to see you, goodbye!')