How to solve this recurrence relation: T(n) = 4*T(sqrt(n)) + n

前端 未结 4 994
我在风中等你
我在风中等你 2020-12-22 07:46

I know how to solve the recurrence relations using Master Method. Also I\'m aware of how to solve the recurrences below:

T(n) = sqrt(n)*T(sqrt(n)) + n

T(n) =

4条回答
  •  长情又很酷
    2020-12-22 08:18

       T(n) = 4 T(sqrt(n)) + n
       4 [ 4 T(sqrt(sqrt(n) + n ] + n
       4^k * T(n^(1/2^k)) +kn because n is power of 2.
       4^k * T(2^(L/2^k)) +kn   [  Let n = 2^L , L= logn]
       4^k * T(2) +kn   [  Let L = 2^k,  k = logL = log log n]
       2^2k * c +kn
       L^2 * c + nloglogn 
       logn^2 * c + nloglogn
       = O(nloglogn)
    

提交回复
热议问题