Equation of a helix parametrized by arc length between two points in space

前端 未结 2 684
隐瞒了意图╮
隐瞒了意图╮ 2020-12-21 17:05

What is the equation of a helix parametrized by arc length (i.e. a function of arc length) between any two points in space? Is there any function for this ?

2条回答
  •  醉酒成梦
    2020-12-21 17:49

    To find the arc length parameterization of the helix defined by

        r(t)  =  cos t i + sin t j + t k
    

    Arc Length = s = Integral(a,b){sqrt((dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2) dt}

    First find the arc length function

         s(t) = Integral(0,t) { sqrt((sin u)^2 + (cos u)^2 + 1) du }
              = Integral(0,t) { sqrt(2) du } = sqrt(2) * t
    

    Solving for t gives

        t   =  s / sqrt(2)
    

    Now substitute back to get

        r(s)  =  cos(s / sqrt(2)) i + sin(s / sqrt(2)) j + (s / sqrt(2)) k
    

    I'll leave the last bit to you!

提交回复
热议问题