What is the equation of a helix parametrized by arc length (i.e. a function of arc length) between any two points in space? Is there any function for this ?
To find the arc length parameterization of the helix defined by
r(t) = cos t i + sin t j + t k
Arc Length = s = Integral(a,b){sqrt((dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2) dt}
First find the arc length function
s(t) = Integral(0,t) { sqrt((sin u)^2 + (cos u)^2 + 1) du }
= Integral(0,t) { sqrt(2) du } = sqrt(2) * t
Solving for t gives
t = s / sqrt(2)
Now substitute back to get
r(s) = cos(s / sqrt(2)) i + sin(s / sqrt(2)) j + (s / sqrt(2)) k
I'll leave the last bit to you!