I have a numpy array like
np.array([[1.0, np.nan, 5.0, 1, True, True, np.nan, True],
[np.nan, 4.0, 7.0, 2, True, np.nan, False, True],
[2.0, 5
Approach #1
Here's a vectorized approach borrowing the concept of masking
from this post -
def mask_app(a):
out = np.empty_like(a)
mask = np.isnan(a.astype(float))
mask_sorted = np.sort(mask,1)
out[mask_sorted] = a[mask]
out[~mask_sorted] = a[~mask]
return out
Sample run -
# Input dataframe
In [114]: data
Out[114]:
ID_1 ID_2 ID_3 Key Var Var_1 Var_2 Var_3
0 1.0 NaN 5.0 1 True True NaN True
1 NaN 4.0 7.0 2 True NaN False True
2 2.0 5.0 NaN 3 False False True NaN
# Use pandas approach for verification
In [115]: data.apply(lambda x : sorted(x,key=pd.isnull),1).values
Out[115]:
array([[1.0, 5.0, 1, True, True, True, nan, nan],
[4.0, 7.0, 2, True, False, True, nan, nan],
[2.0, 5.0, 3, False, False, True, nan, nan]], dtype=object)
# Use proposed approach and verify
In [116]: mask_app(data.values)
Out[116]:
array([[1.0, 5.0, 1, True, True, True, nan, nan],
[4.0, 7.0, 2, True, False, True, nan, nan],
[2.0, 5.0, 3, False, False, True, nan, nan]], dtype=object)
Approach #2
With few more modifications, a simplified version with the idea from this post -
def mask_app2(a):
out = np.full(a.shape,np.nan,dtype=a.dtype)
mask = ~np.isnan(a.astype(float))
out[np.sort(mask,1)[:,::-1]] = a[mask]
return out