I\'m attempting to implement the Sieve of Eratosthenes. The output seems to be correct (minus \"2\" that needs to be added) but if the input to the function is larger than 1
You can try the same way Eratosthenes did. Take an array with all numbers you need to check order ascending, go to number 2 and mark it. Now scratch every second number till the end of the array. Then go to 3 and mark it. After that scratch every third number . Then go to 4 - it is already scratched, so skip it. Repeat this for every n+1 which is not already scratched.
In the end, the marked numbers are the prime one. This algorithm is faster, but sometimes need lots of memory. You can optimize it a little by drop all even numbers (cause they are not prime) and add 2 manually to the list. This will twist the logic a little, but will take half the memory.
Here is an illustration of what I'm talking about: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes