In a pandas dataframe created like this:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(10, size=(6, 6)),
colu
It looks like you can accomplish this with a subset
:
> df <- data.frame(c1=1:6, c2=2:7, c3=3:8, c4=4:9, c5=5:10, c6=6:11)
> rownames(df) <- c('r1', 'r2', 'r3', 'r4', 'r5', 'r6')
> subset(df, select=c1:c4)
c1 c2 c3 c4
r1 1 2 3 4
r2 2 3 4 5
r3 3 4 5 6
r4 4 5 6 7
r5 5 6 7 8
r6 6 7 8 9
> subset(df, select=c1:c2)
c1 c2
r1 1 2
r2 2 3
r3 3 4
r4 4 5
r5 5 6
r6 6 7
If you want to subset by row name range, this hack would do:
> gRI <- function(df, rName) {which(match(rNames, rName) == 1)}
> df[gRI(df,"r2"):gRI(df,"r4"),]
c1 c2 c3 c4 c5 c6
r2 2 3 4 5 6 7
r3 3 4 5 6 7 8
r4 4 5 6 7 8 9