Square root scale using matplotlib/python

后端 未结 4 1733
孤独总比滥情好
孤独总比滥情好 2020-12-21 05:55

I want to make a plot with square root scale using Python:

However, I have no idea how to make it. Matplotlib allows to make log scale but in this case I ne

4条回答
  •  小蘑菇
    小蘑菇 (楼主)
    2020-12-21 05:58

    You can make your own ScaleBase class to do this. I have modified the example from here (which made a square-scale, not a square-root-scale) for your purposes. Also, see the documentation here.

    Note that to do this properly, you should probably also create your own custom tick locator; I haven't done that here though; I just manually set the major and minor ticks using ax.set_yticks().

    import matplotlib.scale as mscale
    import matplotlib.pyplot as plt
    import matplotlib.transforms as mtransforms
    import matplotlib.ticker as ticker
    import numpy as np
    
    class SquareRootScale(mscale.ScaleBase):
        """
        ScaleBase class for generating square root scale.
        """
     
        name = 'squareroot'
     
        def __init__(self, axis, **kwargs):
            # note in older versions of matplotlib (<3.1), this worked fine.
            # mscale.ScaleBase.__init__(self)
    
            # In newer versions (>=3.1), you also need to pass in `axis` as an arg
            mscale.ScaleBase.__init__(self, axis)
     
        def set_default_locators_and_formatters(self, axis):
            axis.set_major_locator(ticker.AutoLocator())
            axis.set_major_formatter(ticker.ScalarFormatter())
            axis.set_minor_locator(ticker.NullLocator())
            axis.set_minor_formatter(ticker.NullFormatter())
     
        def limit_range_for_scale(self, vmin, vmax, minpos):
            return  max(0., vmin), vmax
     
        class SquareRootTransform(mtransforms.Transform):
            input_dims = 1
            output_dims = 1
            is_separable = True
     
            def transform_non_affine(self, a): 
                return np.array(a)**0.5
     
            def inverted(self):
                return SquareRootScale.InvertedSquareRootTransform()
     
        class InvertedSquareRootTransform(mtransforms.Transform):
            input_dims = 1
            output_dims = 1
            is_separable = True
     
            def transform(self, a):
                return np.array(a)**2
     
            def inverted(self):
                return SquareRootScale.SquareRootTransform()
     
        def get_transform(self):
            return self.SquareRootTransform()
     
    mscale.register_scale(SquareRootScale)
    
    fig, ax = plt.subplots(1)
    
    ax.plot(np.arange(0, 9)**2, label='$y=x^2$')
    ax.legend()
    
    ax.set_yscale('squareroot')
    ax.set_yticks(np.arange(0,9,2)**2)
    ax.set_yticks(np.arange(0,8.5,0.5)**2, minor=True)
    
    plt.show()
    

提交回复
热议问题