In Scala, I can define structural types as follows:
type Pressable = { def press(): Unit }
This means that I can define a function or method whi
There isn't a way to define structural types that has a particular function. There is a library that adds duck typing support to C# that can be found here.
This is the example from Duck Typing project. Please note the the duck typing happens at runtime and can fail. It is my understanding also that this library generates proxies for the types that are duck typed, which is far cry from the elegant compile-time support that is enjoyed in Scala. This is most likely as good as it gets with this generation of C#.
public interface ICanAdd
{
int Add(int x, int y);
}
// Note that MyAdder does NOT implement ICanAdd,
// but it does define an Add method like the one in ICanAdd:
public class MyAdder
{
public int Add(int x, int y)
{
return x + y;
}
}
public class Program
{
void Main()
{
MyAdder myAdder = new MyAdder();
// Even though ICanAdd is not implemented by MyAdder,
// we can duck cast it because it implements all the members:
ICanAdd adder = DuckTyping.Cast(myAdder);
// Now we can call adder as you would any ICanAdd object.
// Transparently, this call is being forwarded to myAdder.
int sum = adder.Add(2, 2);
}
}
This is the C# way of achieving the same thing using the good ol boring interfaces.
interface IPressable {
void Press();
}
class Foo {
void Bar(IPressable pressable) {
pressable.Press();
}
}
class Thingy : IPressable, IPushable, etc {
public void Press() {
}
}
static class Program {
public static void Main() {
pressable = new Thingy();
new Foo().Bar(pressable);
}
}