I\'m writing a UDF to process Google Analytics data, and getting the \"UDF out of memory\" error message when I try to process multiple rows. I downloaded the raw data and f
I love the concept of parsing my logs in BigQuery, but I've got the same problem, I get
Error: Resources exceeded during query execution.
The Job Id is bigquery-looker:bquijob_260be029_153dd96cfdb, if that at all helps.
I wrote a very basic parser does a simple match and returns rows. Works just fine on a 10K row data set, but I get out of resources when trying to run against a 3M row logfile.
Any suggestions for a work around?
Here is the javascript code.
function parseLogRow(row, emit) {
r = (row.logrow ? row.logrow : "") + (typeof row.l2 !== "undefined" ? " " + row.l2 : "") + (row.l3 ? " " + row.l3 : "")
ts = null
category = null
user = null
message = null
db = null
found = false
if (r) {
m = r.match(/^(\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d\.\d\d\d (\+|\-)\d\d\d\d) \[([^|]*)\|([^|]*)\|([^\]]*)\] :: (.*)/ )
if( m){
ts = new Date(m[1])/1000
category = m[3] || null
user = m[4] || null
db = m[5] || null
message = m[6] || null
found = true
}
else {
message = r
found = false
}
}
emit({
ts: ts,
category: category,
user: user,
db: db,
message: message,
found: found
});
}
bigquery.defineFunction(
'parseLogRow', // Name of the function exported to SQL
['logrow',"l2","l3"], // Names of input columns
[
{'name': 'ts', 'type': 'timestamp'}, // Output schema
{'name': 'category', 'type': 'string'},
{'name': 'user', 'type': 'string'},
{'name': 'db', 'type': 'string'},
{'name': 'message', 'type': 'string'},
{'name': 'found', 'type': 'boolean'},
],
parseLogRow // Reference to JavaScript UDF
);