Imagine I have a custom type and two functions:
type MyType = Int -> Bool
f1 :: MyType -> Int
f3 :: MyType -> MyType -> MyType
Once a function has been applied its syntactic form is lost. There is now way, should I provide you 2 + 3 to distinguish what you get from just 5. It could have arisen from 2 + 3, or 3 + 2, or the mere constant 5.
If you need to capture syntactic structure then you need to work with syntactic structure.
data Exp = I Int | Plus Exp Exp
justFive :: Exp
justFive = I 5
twoPlusThree :: Exp
twoPlusThree = I 2 `Plus` I 3
threePlusTwo :: Exp
threePlusTwo = I 2 `Plus` I 3
Here the data type Exp captures numeric expressions and we can pattern match upon them:
isTwoPlusThree :: Exp -> Bool
isTwoPlusThree (Plus (I 2) (I 3)) = True
isTwoPlusThree _ = False
But wait, why am I distinguishing between "constructors" which I can pattern match on and.... "other syntax" which I cannot?
Essentially, constructors are inert. The behavior of Plus x y is... to do nothing at all, to merely remain as a box with two slots called "Plus _ _" and plug the two slots with the values represented by x and y.
On the other hand, function application is the furthest thing from inert! When you apply an expression to a function that function (\x -> ...) replaces the xes within its body with the applied value. This dynamic reduction behavior means that there is no way to get a hold of "function applications". They vanish into thing air as soon as you look at them.