I have two data frames : one with all my data (called \'data\') and one with latitudes and longitudes of different stations where each observation starts and ends (called \'
This is one solution. You can also use pandas.merge to add 2 new columns to data and perform the equivalent mapping.
# create series mappings from info
s_lat = info.set_index('station')['latitude']
s_lon = info.set_index('station')['latitude']
# calculate Boolean mask on year
mask = data['year'] == '2018'
# apply mappings, if no map found use fillna to retrieve original data
data.loc[mask, 'latitude'] = data.loc[mask, 'station'].map(s_lat)\
.fillna(data.loc[mask, 'latitude'])
data.loc[mask, 'longitude'] = data.loc[mask, 'station'].map(s_lon)\
.fillna(data.loc[mask, 'longitude'])