Here\'s my code:
from scipy.ndimage import filters
import numpy
a = numpy.array([[2,43,42,123,461],[453,12,111,123,55] ,[123,112,233,12,255]])
b = numpy.arr
This turned out to be a fascinating question. It seems that convolution using the Discrete Fourier Transform (as implemented by numpy.fft.fftn) is equivalent to a circular convolution. So all we need to do is use the 'wrap' convolution mode, and set the origin appropriately:
>>> filters.convolve(a, b, mode='wrap', origin=(-1, -2))
array([[37416, 32251, 46375, 32660, 23986],
[30265, 33206, 62450, 19726, 17613],
[40239, 38095, 24492, 51478, 13028]])
>>> numpy.fft.ifftn(numpy.fft.fftn(a) * numpy.fft.fftn(b))
array([[ 37416.+0.j, 32251.+0.j, 46375.+0.j, 32660.+0.j, 23986.+0.j],
[ 30265.+0.j, 33206.+0.j, 62450.+0.j, 19726.+0.j, 17613.+0.j],
[ 40239.+0.j, 38095.+0.j, 24492.+0.j, 51478.+0.j, 13028.+0.j]])
>>> (filters.convolve(a, b, mode='wrap', origin=(-1, -2)) ==
... numpy.around(numpy.fft.ifftn(numpy.fft.fftn(a) * numpy.fft.fftn(b))))
array([[ True, True, True, True, True],
[ True, True, True, True, True],
[ True, True, True, True, True]], dtype=bool)
The difference has only to do with the way filters.convolve handles edges. A way to use fftn to perform convolution in other modes didn't strike me right away; for a clever (and hindsight-obvious) approach to that problem, see Warren Weckesser's excellent answer.