I am creating a custom layer with weights that need to be multiplied by element-wise before activation. I can get it to work when the output and input is the same shape. The
Before multiplying, you need to repeat the elements to increase the shape.
You can use K.repeat_elements for that. (import keras.backend as K)
class MyLayer(Layer):
#there are some difficulties for different types of shapes
#let's use a 'repeat_count' instead, increasing only one dimension
def __init__(self, repeat_count,**kwargs):
self.repeat_count = repeat_count
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
#first, let's get the output_shape
output_shape = self.compute_output_shape(input_shape)
weight_shape = (1,) + output_shape[1:] #replace the batch size by 1
self.kernel = self.add_weight(name='kernel',
shape=weight_shape,
initializer='ones',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!
#here, we need to repeat the elements before multiplying
def call(self, x):
if self.repeat_count > 1:
#we add the extra dimension:
x = K.expand_dims(x, axis=1)
#we replicate the elements
x = K.repeat_elements(x, rep=self.repeat_count, axis=1)
#multiply
return x * self.kernel
#make sure we comput the ouptut shape according to what we did in "call"
def compute_output_shape(self, input_shape):
if self.repeat_count > 1:
return (input_shape[0],self.repeat_count) + input_shape[1:]
else:
return input_shape