Given the following data frame and necessary wrangling:
import pandas as pd
df=pd.DataFrame({\'A\':[\'a\',\'b\',\'c\'],
\'dates\':[\'2015-08-31 00:00
I have a similar issue where I need to convert timestamp to datetime in numpy though, but I believe it can be apply in Pandas as well. I think using function under Pandas.Timestamp would be better to convert timestamp as below.
==============================
np1=pd.DataFrame.to_numpy(df2)
print(np1)
[[Timestamp('2019-01-31 00:00:00') 'UCHITEC' 2000 2.56 5129.54]
[Timestamp('2019-01-16 00:00:00') 'UCHITEC' 1000 2.61 2618.79]]
np2= np.asarray(np1)
Timestamp('2019-01-16 00:00:00')
np3 = pd.Timestamp.to_datetime64(np2[0][0])
np4 = pd.Timestamp.to_pydatetime(np2[1][0])
print(np3)
print(np4)
2019-01-31T00:00:00.000000000
2019-01-16 00:00:00