Say I\'ve got an N-dimensional boost::multi_array (of type int for simplicity), where N is known at compile time but can vary (i.e. is a non-type template param
Ok, based on the Google groups discussion already mentioned in one of the comments and on one of the examples from the library itself, here is a possible solution that lets you iterate over all values in the multi-array in a single loop and offers a way to retrieve the index for each of these elements (in case this is needed for some other stuff, as in my scenario).
#include
#include
#include
const unsigned short int DIM = 3;
typedef double tValue;
typedef boost::multi_array tArray;
typedef tArray::index tIndex;
typedef boost::array tIndexArray;
tIndex getIndex(const tArray& m, const tValue* requestedElement, const unsigned short int direction)
{
int offset = requestedElement - m.origin();
return(offset / m.strides()[direction] % m.shape()[direction] + m.index_bases()[direction]);
}
tIndexArray getIndexArray( const tArray& m, const tValue* requestedElement )
{
tIndexArray _index;
for ( unsigned int dir = 0; dir < DIM; dir++ )
{
_index[dir] = getIndex( m, requestedElement, dir );
}
return _index;
}
int main()
{
double* exampleData = new double[24];
for ( int i = 0; i < 24; i++ ) { exampleData[i] = i; }
tArray A( boost::extents[2][3][4] );
A.assign(exampleData,exampleData+24);
tValue* p = A.data();
tIndexArray index;
for ( int i = 0; i < A.num_elements(); i++ )
{
index = getIndexArray( A, p );
std::cout << index[0] << " " << index[1] << " " << index[2] << " value = " << A(index) << " check = " << *p << std::endl;
++p;
}
return 0;
}
The output should be
0 0 0 value = 0 check = 0
0 0 1 value = 1 check = 1
0 0 2 value = 2 check = 2
0 0 3 value = 3 check = 3
0 1 0 value = 4 check = 4
0 1 1 value = 5 check = 5
0 1 2 value = 6 check = 6
0 1 3 value = 7 check = 7
0 2 0 value = 8 check = 8
0 2 1 value = 9 check = 9
0 2 2 value = 10 check = 10
0 2 3 value = 11 check = 11
1 0 0 value = 12 check = 12
1 0 1 value = 13 check = 13
1 0 2 value = 14 check = 14
1 0 3 value = 15 check = 15
1 1 0 value = 16 check = 16
1 1 1 value = 17 check = 17
1 1 2 value = 18 check = 18
1 1 3 value = 19 check = 19
1 2 0 value = 20 check = 20
1 2 1 value = 21 check = 21
1 2 2 value = 22 check = 22
1 2 3 value = 23 check = 23
so the memory layout goes from the outer to the inner indices. Note that the getIndex function relies on the default memory layout provided by boost::multi_array. In case the array base or the storage ordering are changed, this would have to be adjusted.