I have a pandas dataframe sorted by a number of columns. Now I\'d like to split the dataframe in predefined percentages, so as to extract and name a few segments.
F
Use numpy.split:
a, b, c = np.split(df, [int(.2*len(df)), int(.5*len(df))])
Sample:
np.random.seed(100)
df = pd.DataFrame(np.random.random((20,5)), columns=list('ABCDE'))
#print (df)
a, b, c = np.split(df, [int(.2*len(df)), int(.5*len(df))])
print (a)
A B C D E
0 0.543405 0.278369 0.424518 0.844776 0.004719
1 0.121569 0.670749 0.825853 0.136707 0.575093
2 0.891322 0.209202 0.185328 0.108377 0.219697
3 0.978624 0.811683 0.171941 0.816225 0.274074
print (b)
A B C D E
4 0.431704 0.940030 0.817649 0.336112 0.175410
5 0.372832 0.005689 0.252426 0.795663 0.015255
6 0.598843 0.603805 0.105148 0.381943 0.036476
7 0.890412 0.980921 0.059942 0.890546 0.576901
8 0.742480 0.630184 0.581842 0.020439 0.210027
9 0.544685 0.769115 0.250695 0.285896 0.852395
print (c)
A B C D E
10 0.975006 0.884853 0.359508 0.598859 0.354796
11 0.340190 0.178081 0.237694 0.044862 0.505431
12 0.376252 0.592805 0.629942 0.142600 0.933841
13 0.946380 0.602297 0.387766 0.363188 0.204345
14 0.276765 0.246536 0.173608 0.966610 0.957013
15 0.597974 0.731301 0.340385 0.092056 0.463498
16 0.508699 0.088460 0.528035 0.992158 0.395036
17 0.335596 0.805451 0.754349 0.313066 0.634037
18 0.540405 0.296794 0.110788 0.312640 0.456979
19 0.658940 0.254258 0.641101 0.200124 0.657625