I\'m trying to set a number of different in a pandas DataFrame all to the same value. I thought I understood boolean indexing for pandas, but I haven\'t found any resources
You can't use the boolean mask on mixed dtypes for this unfortunately, you can use pandas where to set the values:
In [59]:
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
mask = df.isin([1, 3, 12, 'a'])
df = df.where(mask, other=30)
df
Out[59]:
A B
0 1 a
1 30 30
2 3 30
Note: that the above will fail if you do inplace=True in the where method, so df.where(mask, other=30, inplace=True) will raise:
TypeError: Cannot do inplace boolean setting on mixed-types with a non np.nan value
EDIT
OK, after a little misunderstanding you can still use where y just inverting the mask:
In [2]:
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
mask = df.isin([1, 3, 12, 'a'])
df.where(~mask, other=30)
Out[2]:
A B
0 30 30
1 2 b
2 30 f