Given an array of x and y values, the following code will calculate a regression curve for these data points.
# calculate polynomial
z = np.polyfit(x, y, 5)
If you want to show the equation, you can use sympy to output latex:
from sympy import S, symbols, printing
from matplotlib import pyplot as plt
import numpy as np
x=np.linspace(0,1,100)
y=np.sin(2 * np.pi * x)
p = np.polyfit(x, y, 5)
f = np.poly1d(p)
# calculate new x's and y's
x_new = np.linspace(x[0], x[-1], 50)
y_new = f(x_new)
x = symbols("x")
poly = sum(S("{:6.2f}".format(v))*x**i for i, v in enumerate(p[::-1]))
eq_latex = printing.latex(poly)
plt.plot(x_new, y_new, label="${}$".format(eq_latex))
plt.legend(fontsize="small")
plt.show()
the result: